Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(2): e0197523, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38294249

RESUMO

The highly pathogenic arenavirus, Junín virus (JUNV), expresses three truncated alternative isoforms of its nucleoprotein (NP), i.e., NP53kD, NP47kD, and NP40kD. While both NP47kD and NP40kD have been previously shown to be products of caspase cleavage, here, we show that expression of the third isoform NP53kD is due to alternative in-frame translation from M80. Based on this information, we were able to generate recombinant JUNVs lacking each of these isoforms. Infection with these mutants revealed that, while all three isoforms contribute to the efficient control of caspase activation, NP40kD plays the predominant role. In contrast to full-length NP (i.e., NP65kD), which is localized to inclusion bodies, where viral RNA synthesis takes place, the loss of portions of the N-terminal coiled-coil region in these isoforms leads to a diffuse cytoplasmic distribution and a loss of function in viral RNA synthesis. Nonetheless, NP53kD, NP47kD, and NP40kD all retain robust interferon antagonistic and 3'-5' exonuclease activities. We suggest that the altered localization of these NP isoforms allows them to be more efficiently targeted by activated caspases for cleavage as decoy substrates, and to be better positioned to degrade viral double-stranded (ds)RNA species that accumulate in the cytoplasm during virus infection and/or interact with cytosolic RNA sensors, thereby limiting dsRNA-mediated innate immune responses. Taken together, this work provides insight into the mechanism by which JUNV leverages apoptosis during infection to generate biologically distinct pools of NP and contributes to our understanding of the expression and biological relevance of alternative protein isoforms during virus infection.IMPORTANCEA limited coding capacity means that RNA viruses need strategies to diversify their proteome. The nucleoprotein (NP) of the highly pathogenic arenavirus Junín virus (JUNV) produces three N-terminally truncated isoforms: two (NP47kD and NP40kD) are known to be produced by caspase cleavage, while, here, we show that NP53kD is produced by alternative translation initiation. Recombinant JUNVs lacking individual NP isoforms revealed that all three isoforms contribute to inhibiting caspase activation during infection, but cleavage to generate NP40kD makes the biggest contribution. Importantly, all three isoforms retain their ability to digest double-stranded (ds)RNA and inhibit interferon promoter activation but have a diffuse cytoplasmic distribution. Given the cytoplasmic localization of both aberrant viral dsRNAs, as well as dsRNA sensors and many other cellular components of innate immune activation pathways, we suggest that the generation of NP isoforms not only contributes to evasion of apoptosis but also robust control of the antiviral response.


Assuntos
Caspases , Citoplasma , Febre Hemorrágica Americana , Interações Hospedeiro-Patógeno , Imunidade Inata , Vírus Junin , Nucleoproteínas , Biossíntese de Proteínas , Humanos , Apoptose , Inibidores de Caspase/metabolismo , Caspases/metabolismo , Citoplasma/metabolismo , Citoplasma/virologia , Ativação Enzimática , Febre Hemorrágica Americana/imunologia , Febre Hemorrágica Americana/virologia , Interferons/genética , Interferons/imunologia , Vírus Junin/genética , Vírus Junin/metabolismo , Vírus Junin/patogenicidade , Nucleoproteínas/biossíntese , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Viral/biossíntese , RNA Viral/genética , Replicação Viral
2.
Antiviral Res ; 170: 104569, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31356830

RESUMO

Viral hemorrhagic fevers (VHFs) cause thousands of fatalities every year, but the treatment options for their management remain very limited. In particular, the development of therapeutic interventions is restricted by the lack of commercial viability of drugs targeting individual VHF agents. This makes approaches like drug repurposing and/or the identification of broad range therapies (i.e. those directed at host responses or common proviral factors) highly attractive. However, the identification of candidates for such antiviral repurposing or of host factors/pathways important for the virus life cycle is reliant on high-throughput screening (HTS). Recently, such screening work has been increasingly facilitated by the availability of reverse genetics-based approaches, including tools such as full-length clone (FLC) systems to generate reporter-expressing viruses or various life cycle modelling (LCM) systems, many of which have been developed and/or greatly improved during the last years. In particular, since LCM systems are capable of modelling specific steps in the life cycle, they are a valuable tool for both targeted screening (i.e. for inhibitors of a specific pathway) and mechanism of action studies. This review seeks to summarize the currently available reverse genetics systems for negative-sense VHF causing viruses (i.e. arenaviruses, bunyaviruses and filoviruses), and to highlight the recent advancements made in applying these systems for HTS to identify either antivirals or new virus-host interactions that might hold promise for the development of future treatments for the infections caused by these deadly but neglected virus groups.


Assuntos
Arenaviridae/genética , Bunyaviridae/genética , Filoviridae/genética , Febres Hemorrágicas Virais/virologia , Ensaios de Triagem em Larga Escala , Genética Reversa/métodos , Antivirais/isolamento & purificação , Arenaviridae/efeitos dos fármacos , Bunyaviridae/efeitos dos fármacos , Filoviridae/efeitos dos fármacos , Genoma Viral , Interações entre Hospedeiro e Microrganismos , Humanos
3.
Antiviral Res ; 163: 106-116, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30668977

RESUMO

Arenaviruses cause several viral hemorrhagic fevers endemic to Africa and South America. The respective causative agents are classified as biosafety level (BSL) 4 pathogens. Unlike for most other BSL4 agents, for the New World arenavirus Junín virus (JUNV) both a highly effective vaccination (Candid#1) and a post-exposure treatment, based on convalescent plasma transfer, are available. In particular, neutralizing antibodies (nAbs) represent a key protective determinant in JUNV infection, which is supported by the correlation between successful passive antibody therapy and the levels of nAbs administered. Unfortunately, comparable resources for the management of other closely related arenavirus infections are not available. Given the significant challenges inherent in studying BSL4 pathogens, our goal was to first assess the suitability of a JUNV transcription and replication-competent virus-like particle (trVLP) system for measuring virus neutralization under BSL1/2 conditions. Indeed, we could show that infection with JUNV trVLPs is glycoprotein (GP) dependent, that trVLP input has a direct correlation to reporter readout, and that these trVLPs can be neutralized by human serum with kinetics similar to those obtained using authentic virus. These properties make trVLPs suitable for use as a proxy for virus in neutralization assays. Using this platform we then evaluated the potential of JUNV nAbs to cross-neutralize entry mediated by GPs from other arenaviruses using JUNV (strain Romero)-based trVLPs bearing GPs either from other JUNV strains, other closely related New World arenaviruses (e.g. Tacaribe, Machupo, Sabiá), or the distantly related Lassa virus. While nAbs against the JUNV vaccine strain are also active against a range of other JUNV strains, they appear to have little or no capacity to neutralize other arenavirus species, suggesting that therapy with whole plasma directed against another species is unlikely to be successful and that the targeted development of cross-specific monoclonal antibody-based resources is likely needed. Such efforts will be supported by the availability of this BSL1/2 screening platform which provides a rapid and easy means to characterize the potency and reactivity of anti-arenavirus neutralizing antibodies against a range of arenavirus species.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Reações Cruzadas , Vírus Junin/imunologia , Arenavirus do Novo Mundo/imunologia , Células HEK293 , Febre Hemorrágica Americana/imunologia , Humanos , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...